Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38600667

RESUMO

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding motifs. Based on the discovery, we make the preprocessing and coding closer to the natural biological process. Besides, due to the input being based on multiple types of features and the attention module focused on the BiGRU hidden layer, TripHLApan has learned more sequence level binding information. The application of transfer learning strategies ensures the accuracy of prediction results under special lengths (peptides in length 8) and model scalability with the data explosion. Compared with the current optimal models, TripHLApan exhibits strong predictive performance in various prediction environments with different positive and negative sample ratios. In addition, we validate the superiority and scalability of TripHLApan's predictive performance using additional latest data sets, ablation experiments and binding reconstitution ability in the samples of a melanoma patient. The results show that TripHLApan is a powerful tool for predicting the binding of HLA-I and HLA-II molecular peptides for the synthesis of tumor vaccines. TripHLApan is publicly available at https://github.com/CSUBioGroup/TripHLApan.git.


Assuntos
Vacinas Anticâncer , Humanos , Ligação Proteica , Peptídeos/química , Antígenos HLA/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe I/química , Aprendizado de Máquina
2.
Front Immunol ; 15: 1329846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529279

RESUMO

Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Nucleocapsídeo/química , Peptídeos/química , SARS-CoV-2/química , Antígenos de Histocompatibilidade Classe II/química , Glicoproteína da Espícula de Coronavírus/química
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38555476

RESUMO

Antigen presentation on MHC class II (pMHCII presentation) plays an essential role in the adaptive immune response to extracellular pathogens and cancerous cells. But it can also reduce the efficacy of large-molecule drugs by triggering an anti-drug response. Significant progress has been made in pMHCII presentation modeling due to the collection of large-scale pMHC mass spectrometry datasets (ligandomes) and advances in machine learning. Here, we develop graph-pMHC, a graph neural network approach to predict pMHCII presentation. We derive adjacency matrices for pMHCII using Alphafold2-multimer and address the peptide-MHC binding groove alignment problem with a simple graph enumeration strategy. We demonstrate that graph-pMHC dramatically outperforms methods with suboptimal inductive biases, such as the multilayer-perceptron-based NetMHCIIpan-4.0 (+20.17% absolute average precision). Finally, we create an antibody drug immunogenicity dataset from clinical trial data and develop a method for measuring anti-antibody immunogenicity risk using pMHCII presentation models. Our model increases receiver operating characteristic curve (ROC)-area under the ROC curve (AUC) by 2.57% compared to just filtering peptides by hits in OASis alone for predicting antibody drug immunogenicity.


Assuntos
Antígenos de Histocompatibilidade Classe II , Peptídeos , Antígenos de Histocompatibilidade Classe II/química , Peptídeos/química , Apresentação de Antígeno , Redes Neurais de Computação
4.
Structure ; 32(2): 228-241.e4, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113889

RESUMO

Major histocompatibility complex (MHC) proteins present peptides on the cell surface for T cell surveillance. Reliable in silico prediction of which peptides would be presented and which T cell receptors would recognize them is an important problem in structural immunology. Here, we introduce an AlphaFold-based pipeline for predicting the three-dimensional structures of peptide-MHC complexes for class I and class II MHC molecules. Our method demonstrates high accuracy, outperforming existing tools in class I modeling accuracy and class II peptide register prediction. We validate its performance and utility with new experimental data on a recently described cancer neoantigen/wild-type peptide pair and explore applications toward improving peptide-MHC binding prediction.


Assuntos
Antígenos de Histocompatibilidade Classe II , Peptídeos , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/química , Ligação Proteica , Linfócitos T/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo
5.
Stud Health Technol Inform ; 302: 1067-1068, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203582

RESUMO

Prediction of binders of the major histocompatibility complex class II (MHC-II) molecules is critical for T cell immunogenicity. As protein-protein interaction also relies on physicochemical properties, we aim to build a novel model combining sequence information and the physicochemical properties of proteins. Our research used data from the NetMHCIIpan 3.2 study. Features include BLOSUM50 and the physicochemical properties from iFeature Python package. We created a hybrid model of recurrent neural layers and feedforward layers. The final Area Under the Receiver Operating Characteristics (AUROC) on the test data was 0.755.


Assuntos
Antígenos de Histocompatibilidade Classe II , Sequência de Aminoácidos , Ligação Proteica , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo
6.
Biophys J ; 122(9): 1665-1677, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36964657

RESUMO

Major histocompatibility complex class II (MHC-II) plays an indispensable role in activating CD4+ T cell immune responses by presenting antigenic peptides on the cell surface for recognition by T cell receptors. The assembly of MHC-II and antigenic peptide is therefore a prerequisite for the antigen presentation. To date, however, the atomic-level mechanism underlying the peptide-loading dynamics for MHC-II is still elusive. Here, by constructing Markov state models based on extensive all-atom molecular dynamics simulations, we reveal the complete peptide-loading dynamics into MHC-II for one SARS-CoV-2 S-protein-derived antigenic peptide (235ITRFQTLLALHRSYL249). Our Markov state model identifies six metastable states (S1-S6) during the peptide-loading process and determines two dominant loading pathways. The peptide could potentially approach the antigen-binding groove via either its N- or C-terminus. Then, the consecutive insertion of several anchor residues into the binding pockets profoundly dictates the peptide-loading dynamics. Notably, the MHC-II αA52-E55 motif could guide the peptide loading into the antigen-binding groove via forming ß-sheets conformation with the incoming peptide. The rate-limiting step, namely S5→S6, is mainly attributed to a considerable desolvation penalty triggered by the binding of the peptide C-terminus. Moreover, we further examined the conformational changes associated with the peptide exchange process catalyzed by the chaperon protein HLA-DM. A flipped-out conformation of MHC-II αW43 captured in S1-S3 is considered a critical anchor point for HLA-DM to modulate the structural dynamics. Our work provides deep structural insights into the key regulatory factors in MHC-II responsible for peptide recognition and guides future design for peptide vaccines against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/química , Ligação Proteica
7.
Protein Expr Purif ; 197: 106098, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513232

RESUMO

Staphylococcus aureus is a common human and animal pathogen. These bacteria have various pathogenicity factors, including enterotoxin-like proteins. SElP (staphylococcal enterotoxin-like protein P) has potential zinc ion-binding sites and is able to interact with major histocompatibility complex class II (MHCII) and T-cell receptor (TCR). A method for the expression and isolation of the enterotoxin-like protein of Staphylococcus aureus (SElP) was developed. The expression was carried out in E. coli cells, and the protein was isolated by affinity chromatography on a NiNTA column. The endotoxins were separated by affinity chromatography on Affi-Prep® polymyxin. It was shown by gel filtration that the resulting protein had a monomeric form. The protein in zinc-bound and zinc-free forms was characterized by protein melting using fluorescence method and it was shown that zinc stabilizes the spatial structure of SElP. The functional activity of SElP was investigated by the ability to interact with the histocompatibility antigen class II receptor (MHC-II) exposed on the B cell line Raji by flow cytofluorometry. The zinc-bound and zinc-free forms were shown to differ in their interaction with MHC-II. The localization of the zinc-binding site was confirmed by the introduction of the H225 and D227 mutations. The mutant protein was characterized by melting, and its propensity to form aggregates was shown.


Assuntos
Enterotoxinas , Superantígenos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Enterotoxinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Íons , Receptores de Antígenos de Linfócitos T , Staphylococcus aureus/metabolismo , Superantígenos/genética , Superantígenos/metabolismo , Zinco/química
8.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35226074

RESUMO

The development of autoimmune diseases following SARS-CoV-2 infection, including multisystem inflammatory syndrome, has been reported, and several mechanisms have been suggested, including molecular mimicry. We developed a scalable, comparative immunoinformatics pipeline called cross-reactive-epitope-search-using-structural-properties-of-proteins (CRESSP) to identify cross-reactive epitopes between a collection of SARS-CoV-2 proteomes and the human proteome using the structural properties of the proteins. Overall, by searching 4 911 245 proteins from 196 352 SARS-CoV-2 genomes, we identified 133 and 648 human proteins harboring potential cross-reactive B-cell and CD8+ T-cell epitopes, respectively. To demonstrate the robustness of our pipeline, we predicted the cross-reactive epitopes of coronavirus spike proteins, which were recognized by known cross-neutralizing antibodies. Using single-cell expression data, we identified PARP14 as a potential target of intermolecular epitope spreading between the virus and human proteins. Finally, we developed a web application (https://ahs2202.github.io/3M/) to interactively visualize our results. We also made our pipeline available as an open-source CRESSP package (https://pypi.org/project/cressp/), which can analyze any two proteomes of interest to identify potentially cross-reactive epitopes between the proteomes. Overall, our immunoinformatic resources provide a foundation for the investigation of molecular mimicry in the pathogenesis of autoimmune and chronic inflammatory diseases following COVID-19.


Assuntos
Biologia Computacional/métodos , Epitopos/química , Epitopos/imunologia , SARS-CoV-2/imunologia , Software , Proteínas Virais/química , Proteínas Virais/imunologia , Algoritmos , Reações Cruzadas/imunologia , Epitopos de Linfócito B , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Modelos Moleculares , Mimetismo Molecular , Redes Neurais de Computação , Proteoma , Proteômica/métodos , Relação Estrutura-Atividade , Navegador
9.
Mol Immunol ; 143: 17-26, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995990

RESUMO

In the process of structure-function studies on the MHC class II molecule expressed in autoimmunity prone SJL mice, I-As, we discovered a disparity from the reported sequence of the MHC class II beta chain. The variant is localized at a highly conserved site of the beta chain, at residue 58. Our studies revealed that this single amino acid substitution of Pro for Ala at this residue, found in I-As, changes the structure of the MHC class II molecule, as evidenced by a loss of recognition by two monoclonal antibodies, and elements of MHC class II conformational stability identified through molecular dynamics simulation. Two other rare polymorphisms in I-As involved in hydrogen bonding potential between the alpha chain and the peptide main chain are located at the same end of the MHC class II binding pocket, studied in parallel may impact the consequences of the ß chain variant. Despite striking changes in MHC class II structure, CD4 T cell recognition of influenza-derived peptides was preserved. These disparate findings were reconciled by discovering, through monoclonal antibody blocking approaches, that CD4 T cell recognition by I-As restricted CD4 T cells focused more on the region of MHC class II at the peptide's amino terminus. These studies argue that the conformational variability or flexibility of the MHC class II molecule in that region of I-As select a CD4 T cell repertoire that deviates from the prototypical docking mode onto MHC class II peptide complexes. Overall, our results are consistent with the view that naturally occurring MHC class II molecules can possess polymorphisms that destabilize prototypical features of the MHC class II molecule but that can maintain T cell recognition of the MHC class II:peptide ligand via alternate docking modes.


Assuntos
Anticorpos Monoclonais/metabolismo , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Polimorfismo Genético , Multimerização Proteica , Alelos , Sequência de Aminoácidos , Animais , Células Apresentadoras de Antígenos/metabolismo , Feminino , Ligação de Hidrogênio , Camundongos , Simulação de Dinâmica Molecular , Peptídeos/química , Estabilidade Proteica , Estrutura Secundária de Proteína
10.
Life Sci ; 288: 120182, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843735

RESUMO

BACKGROUND: Sjögren's syndrome (SjS) is an autoimmune disease with a strong genetic association. To date, no vaccine or therapeutic agent exists to cure SjS, and patients must rely on lifelong therapies to treat symptoms. Human leukocyte antigens (HLA) are primary susceptibility loci that form the genetic basis for many autoimmune diseases, including SjS. In this study, we sought to determine whether blocking MHC class II IAg7 antigen presentation in the NOD mouse would alleviate SjS by preventing the recognition of autoantigens by pathogenic T cells. METHODS: Mapping of the antigenic epitopes of Ro60 autoantigen to IAg7 of the NOD mice was performed using structural modeling and in-vitro stimulation. Tetraazatricyclo-dodecane (TATD) and 8-Azaguanine (8-Aza) were previously identified as potential binders to IAg7 of the NOD mice using in silico drug screening. Mice were treated with 20mgs/kg via IP every day five days/week for 23 weeks. Disease profiling was conducted. FINDINGS: Specific peptides of Ro60 autoantigen were identified to bind to IAg7 and stimulated splenocytes of the NOD mice. Treating NOD mice with TATD or 8-Azaguanine alleviated SjS symptoms by improving salivary and lacrimal gland secretory function, decreasing the levels of autoantibodies, and reducing the severity of lymphocytic infiltration in the salivary and lacrimal glands. INTERPRETATION: This study presents a novel therapeutic approach for SjS by identifying small molecules capable of inhibiting T cell response via antigen-specific presentation. FUNDING: CQN is supported financially in part by PHS grants AI130561, DE026450, and DE028544 from the National Institutes of Health.


Assuntos
Alcanos/química , Apresentação de Antígeno/imunologia , Azaguanina/farmacologia , Antígenos de Histocompatibilidade Classe II/química , Compostos Policíclicos/farmacologia , Síndrome de Sjogren/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Camundongos Endogâmicos NOD , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia
11.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903649

RESUMO

Two classes of major histocompatibility complex (MHC) molecules, MHC class I and class II, play important roles in our immune system, presenting antigens to functionally distinct T lymphocyte populations. However, the origin of this essential MHC class divergence is poorly understood. Here, we discovered a category of MHC molecules (W-category) in the most primitive jawed vertebrates, cartilaginous fish, and also in bony fish and tetrapods. W-category, surprisingly, possesses class II-type α- and ß-chain organization together with class I-specific sequence motifs for interdomain binding, and the W-category α2 domain shows unprecedented, phylogenetic similarity with ß2-microglobulin of class I. Based on the results, we propose a model in which the ancestral MHC class I molecule evolved from class II-type W-category. The discovery of the ancient MHC group, W-category, sheds a light on the long-standing critical question of the MHC class divergence and suggests that class II type came first.


Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Complexo Principal de Histocompatibilidade/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Evolução Molecular , Peixes/classificação , Peixes/genética , Peixes/imunologia , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe II/química , Humanos , Família Multigênica , Filogenia , Domínios Proteicos , Multimerização Proteica , Vertebrados/classificação , Vertebrados/genética , Vertebrados/imunologia
12.
FASEB J ; 35(12): e21997, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719814

RESUMO

The deadliest complication of infection by Plasmodium parasites, cerebral malaria, accounts for the majority of malarial fatalities. Although our understanding of the cellular and molecular mechanisms underlying the pathology remains incomplete, recent studies support the contribution of systemic and neuroinflammation as the cause of cerebral edema and blood-brain barrier (BBB) dysfunction. All Plasmodium species encode an orthologue of the innate cytokine, Macrophage Migration Inhibitory Factor (MIF), which functions in mammalian biology to regulate innate responses. Plasmodium MIF (PMIF) similarly signals through the host MIF receptor CD74, leading to an enhanced inflammatory response. We investigated the PMIF-CD74 interaction in the onset of experimental cerebral malaria (ECM) and liver stage Plasmodium development by using a combination of CD74 deficient (Cd74-/- ) hosts and PMIF deficient parasites. Cd74-/- mice were found to be protected from ECM and the protection was associated with the inability of brain microvessels to present parasite antigen to sequestered and pathogenic Plasmodium-specific CD8+ T cells. Infection of WT hosts with PMIF-deficient sporozoites or infection of Cd74-/- hosts with WT sporozoites impacted the survival of infected hepatocytes and subsequently reduced blood-stage associated inflammation, contributing to protection from ECM. We recapitulated these finding with a novel pharmacologic PMIF-selective antagonist that reduced PMIF/CD74 signaling and fully protected mice from ECM. These findings reveal a conserved mechanism for Plasmodium usurpation of host CD74 signaling and suggest a tractable approach for new pharmacologic intervention.


Assuntos
Antígenos de Diferenciação de Linfócitos B/química , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/química , Inflamação/prevenção & controle , Fígado/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Malária Cerebral/prevenção & controle , Plasmodium berghei/fisiologia , Animais , Antígenos de Diferenciação de Linfócitos B/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Fígado/imunologia , Fígado/parasitologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Malária Cerebral/etiologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Mol Immunol ; 139: 177-183, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555693

RESUMO

The prediction of human leukocyte antigen (HLA) class II binding peptides plays important roles in understanding the mechanism of immune recognition and developing effective epitope-based vaccines. In this work, gated recurrent unit (GRU)-based recurrent neural network (RNN) was successfully employed to establish a pan-specific prediction model of HLA-II-binding peptides by using only the HLA and peptide sequence information. In comparison with the existing pan-specific models of HLA-II-binding peptides, the GRU-based RNN model covered a broad spectrum of HLA-II molecules including 50 HLA-DR, 47 HLA-DQ, and 19 HLA-DP molecules with peptide lengths varying from 8 to 43 mers. The results demonstrated strong discriminant capabilities of the GRU-based RNN model, of which the AUC values were 0.92, 0.88, and 0.88 for the training, validation, and test sets, respectively. Also, the GRU-based model showed state-of-the-art performances in predicting the binding peptides with the length ranging from 8-32 mers, which provides an efficient method for predicting HLA-II-binding peptides of longer lengths in comparison with the available methods. Overall, taking the advantages of the RNN architecture, the established pan-specific GRU model can be used for predicting accurately the HLA-II-binding peptides in a simple and direct manner.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Redes Neurais de Computação , Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ligação Proteica
15.
Immunol Lett ; 238: 75-95, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329645

RESUMO

BACKGROUND: HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS: For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS: All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS: Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.


Assuntos
Sítios de Ligação , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/imunologia , Polimorfismo Genético , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Cadeias beta de HLA-DQ/química , Cadeias beta de HLA-DQ/genética , Cadeias beta de HLA-DQ/imunologia , Antígenos de Histocompatibilidade Classe II/química , Humanos , Peptídeos/química
16.
Genome Med ; 13(1): 101, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127050

RESUMO

BACKGROUND: Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). METHODS: We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. RESULTS: From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. CONCLUSIONS: Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Biologia Computacional/métodos , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Sequência de Aminoácidos , Animais , COVID-19/virologia , Vacinas contra COVID-19/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Peptídeos/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
17.
Front Immunol ; 12: 658601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995376

RESUMO

Antigen presentation by MHC-II proteins in the thymus is central to selection of CD4 T cells, but analysis of the full repertoire of presented peptides responsible for positive and negative selection is complicated by the low abundance of antigen presenting cells. A key challenge in analysis of limiting abundance immunopeptidomes by mass spectrometry is distinguishing true MHC-binding peptides from co-eluting non-specifically bound peptides present in the mixture eluted from immunoaffinity-purified MHC molecules. Herein we tested several approaches to minimize the impact of non-specific background peptides, including analyzing eluates from isotype-control antibody-conjugated beads, considering only peptides present in nested sets, and using predicted binding motif analysis to identify core epitopes. We evaluated these methods using well-understood human cell line samples, and then applied them to analysis of the I-Ab presented immunopeptidome of the thymus of C57BL/6 mice, comparing this to the more easily characterized splenic B cell and dendritic cell populations. We identified a total of 3473 unique peptides eluted from the various tissues, using a data dependent acquisition strategy with a false-discovery rate of <1%. The immunopeptidomes presented in thymus as compared to splenic B cells and DCs identified shared and tissue-specific epitopes. A broader length distribution was observed for peptides presented in the thymus as compared to splenic B cells or DCs. Detailed analysis of 61 differentially presented peptides indicated a wider distribution of I-Ab binding affinities in thymus as compared to splenic B cells. These results suggest different constraints on antigen processing and presentation pathways in central versus peripheral tissues.


Assuntos
Apresentação de Antígeno/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Peptídeos/imunologia , Timo/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/química , Antígenos HLA-DR/química , Antígenos HLA-DR/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Ligação Proteica , Baço/imunologia , Baço/metabolismo , Timo/metabolismo
18.
Nat Biotechnol ; 39(8): 943-948, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33941928

RESUMO

The ability to identify T cells that recognize specific peptide antigens bound to major histocompatibility complex (MHC) molecules has enabled enumeration and molecular characterization of the lymphocytes responsible for cell-mediated immunity. Fluorophore-labeled peptide:MHC class I (p:MHCI) tetramers are well-established reagents for identifying antigen-specific CD8+ T cells by flow cytometry, but efforts to extend the approach to CD4+ T cells have been less successful, perhaps owing to lower binding strength between CD4 and MHC class II (MHCII) molecules. Here we show that p:MHCII tetramers engineered by directed evolution for enhanced CD4 binding outperform conventional tetramers for the detection of cognate T cells. Using the engineered tetramers, we identified about twice as many antigen-specific CD4+ T cells in mice immunized against multiple peptides than when using traditional tetramers. CD4 affinity-enhanced p:MHCII tetramers, therefore, allow direct sampling of antigen-specific CD4+ T cells that cannot be accessed with conventional p:MHCII tetramer technology. These new reagents could provide a deeper understanding of the T cell repertoire.


Assuntos
Linfócitos T CD4-Positivos , Corantes Fluorescentes , Antígenos de Histocompatibilidade Classe II , Animais , Antígenos CD4/química , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
19.
J Med Virol ; 93(9): 5350-5357, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913542

RESUMO

PARP14 and PARP9 play a key role in macrophage immune regulation. SARS-CoV-2 is an emerging viral disease that triggers hyper-inflammation known as a cytokine storm. In this study, using in silico tools, we hypothesize about the immunological phenomena of molecular mimicry between SARS-CoV-2 Nsp3 and the human PARP14 and PARP9. The results showed an epitope of SARS-CoV-2 Nsp3 protein that contains consensus sequences for both human PARP14 and PARP9 that are antigens for MHC Classes 1 and 2, which can potentially induce an immune response against human PARP14 and PARP9; while its depletion causes a hyper-inflammatory state in SARS-CoV-2 patients.


Assuntos
COVID-19/imunologia , Proteases Semelhantes à Papaína de Coronavírus/química , Síndrome da Liberação de Citocina/imunologia , Proteínas de Neoplasias/química , Poli(ADP-Ribose) Polimerases/química , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Sítios de Ligação , COVID-19/genética , COVID-19/patologia , COVID-19/virologia , Simulação por Computador , Sequência Consenso , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/imunologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Simulação de Acoplamento Molecular , Mimetismo Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/imunologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
20.
PLoS Biol ; 19(4): e3001057, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901176

RESUMO

Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral diseases. An iconic example is Marek's disease, caused by an oncogenic herpesvirus with over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to T lymphocytes, and it has been hard to understand how such MHC molecules could be involved in susceptibility to Marek's disease, given the potential number of peptides from over 100 genes. We used a new in vitro infection system and immunopeptidomics to determine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which is known to confer resistance to Marek's disease. Surprisingly, we found that the vast majority of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II molecule in chickens. We expressed BL2*02 linked to several Marek's disease virus (MDV) peptides and determined one X-ray crystal structure, showing how a single small amino acid in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10 amino acids, compared to the 9 amino acids in all other reported class II molecules. The limited number of potential T cell epitopes from such a complex virus can explain the differential MHC-determined resistance to MDV, but raises questions of mechanism and opportunities for vaccine targets in this important food species, as well as providing a basis for understanding class II molecules in other species including humans.


Assuntos
Galinhas/imunologia , Herpesvirus Galináceo 2/imunologia , Antígenos de Histocompatibilidade Classe II , Doença de Marek/imunologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Bolsa de Fabricius/imunologia , Células Cultivadas , Galinhas/genética , Galinhas/virologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Haplótipos , Herpesvirus Galináceo 2/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Epitopos Imunodominantes/metabolismo , Doença de Marek/genética , Doença de Marek/virologia , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...